II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER 2022

MECHANICS OF FLUIDS
 (CIVIL ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Define the following fluid properties and give their units i) Specific weight ii) Specific gravity iii) Surface tension iv) Vapour pressure	L2	CO1	8 M
	b)	A differential manometer connected at the two points A and B at the same level in a pipe containing an oil of specific gravity 0.8 , shows a difference in mercury level as 100 mm . Determine the difference in pressure between the two points.	L3	CO1	6 M
OR					
2	a)	Explain the working principle of Bourdon's pressure gauge with a neat sketch.	L2	CO1	6 M
	b)	The surface tension of water in contact with air at $20^{\circ} \mathrm{C}$ is $0.0725 \mathrm{~N} / \mathrm{m}$. The pressure inside a droplet of water is to be $0.02 \mathrm{~N} / \mathrm{cm}^{2}$ greater than the outside pressure. Calculate the diameter of the droplet of water.	L3	CO1	8 M

UNIT-II					
3	a)	Define Total pressure and Centre of pressure and prove that the centre of pressure of any lamina immersed in a liquid lies always below its centre of the gravity.	L3	CO2	7 M
	b)	Derive an expression for continuity equation for a steady one dimensional flow of incompressible fluid.	L3	CO 2	7 M
OR					
4	a)	A rectangular plane surface 2 m wide and 3 m deep lies in water in such a way that its plane makes an angle of 30° with the free surface of water. Determine the total pressure and position of centre of pressure when the upper edge is 1.5 m below the free water surface.	L3	CO 2	7 M
	b)	Explain in detail, the various types of fluid flow.	L2	CO 2	7 M
UNIT-III					
5	a)	Derive Euler's equation of motion along a stream line and integrate it to obtain Bernoulli's equation. State all the assumptions made.	L3	CO3	8 M
	b)	What is boundary layer separation? What are the various conditions related to boundary layer separation?	L2	CO 3	6 M
OR					

UNIT-V					
9	a)	Derive an expression for discharge through rectangular notch.	L3	CO5	6 M
	b)	A $20 \mathrm{~cm} \times 10 \mathrm{~cm}$ venturimeter is inserted in a vertical pipe carrying oil of specific gravity 0.8 , the flow of oil is in upward direction. The difference of levels between the throat and inlet section is 50 cm . The oil-mercury differential manometer gives a reading of 30 cm of mercury. Find the discharge of oil. Neglect losses.	L3	CO5	8 M
OR					
10	a)	What is a pitot-tube? How will you determine the velocity at any point with the help of pitot-tube?	L3	CO5	6 M
	b)	The following data related to an orifice meter Diameter of the pipe $=240 \mathrm{~mm}$ Diameter of orifice $=120 \mathrm{~mm}$ Specific gravity of oil $=0.88$ Reading of the differential manometer $=400 \mathrm{~mm}$ of mercury $C_{d}=0.65$ Determine the rate of flow.	L3	CO5	8 M

