II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2022

MECHANICS OF FLUIDS (CIVIL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks	
	UNIT-I					
1	a)	Define the following fluid properties and	L2	CO1	8 M	
		give their units				
		i) Specific weight ii) Specific gravity				
		iii) Surface tension iv) Vapour pressure				
	b)	A differential manometer connected at the	L3	CO1	6 M	
		two points A and B at the same level in a				
		pipe containing an oil of specific gravity				
		0.8, shows a difference in mercury level as				
		100 mm. Determine the difference in				
		pressure between the two points.				
	OR					
2	a)	Explain the working principle of Bourdon's	L2	CO1	6 M	
		pressure gauge with a neat sketch.				
	b)	The surface tension of water in contact with	L3	CO1	8 M	
		air at 20° C is 0.0725 N/m. The pressure				
		inside a droplet of water is to be 0.02 N/cm ²				
		greater than the outside pressure. Calculate				
		the diameter of the droplet of water.				

		UNIT-II			
3	a)	Define Total pressure and Centre of pressure and prove that the centre of pressure of any lamina immersed in a liquid lies always below its centre of the gravity.	L3	CO2	7 M
	b)	Derive an expression for continuity equation for a steady one dimensional flow of incompressible fluid.	L3	CO2	7 M
		OR			
4	a)	3m deep lies in water in such a way that its plane makes an angle of 30° with the free surface of water. Determine the total pressure and position of centre of pressure when the upper edge is 1.5 m below the free water surface.	L3	CO2	7 M
	b)	Explain in detail, the various types of fluid flow.	L2	CO2	7 M
		UNIT-III			
5	a)	Derive Euler's equation of motion along a stream line and integrate it to obtain Bernoulli's equation. State all the assumptions made.	L3	CO3	8 M
	b)	What is boundary layer separation? What are the various conditions related to boundary layer separation? OR	L2	CO3	6 M

6	a)	State momentum equation. How will you	L3	CO3	8 M	
		apply momentum equation for determining				
		the force exerted by a flowing liquid on a				
		pipe bend?				
	b)	Experiments were conducted on a wind	L3	CO3	6 M	
		tunnel with a wind speed of 50 km/h on a				
		flat plate of size 2 m long and 1 m wide.				
		The density of air is 1.15 kg/m ³ . The				
		coefficients of lift and drag are 0.75 and				
		0.15 respectively. Determine i) The lift				
		force ii) The drag force and iii) Resultant				
		force.				
UNIT-IV						
7	a)	Prove that the velocity distribution for	L3	CO4	8 M	
		laminar flow between two parallel plates				
		when both are fixed, is parabolic in nature				
		and that the maximum velocity is equal to				
		1.5 times the mean velocity.				
	b)	Explain in detail, the terms HGL and TEL	L2	CO4	6 M	
		of a pipe line.				
		OR		1		
8	a)	Derive a relationship between shear stress	L3	CO4	6 M	
		and pressure gradient for viscous flow in a				
		horizontal pipe (Hagen poiselli's equation).				
	b)	Two pipes of lengths 2500 m each and	L3	CO4	8 M	
		diameters 80 cm and 60 cm respectively are				
		connected in parallel. The coefficient of				
		friction for each pipe is 0.006. The total				
		flow is equal to 250 lit/s, find the rate of				
		flow in each pipe.				

UNIT-V						
9	a)	Derive an expression for discharge through	L3	CO5	6 M	
		rectangular notch.				
	b)	A 20cm x 10cm venturimeter is inserted in a	L3	CO5	8 M	
		vertical pipe carrying oil of specific gravity				
		0.8, the flow of oil is in upward direction.				
		The difference of levels between the throat				
		and inlet section is 50 cm. The oil-mercury				
		differential manometer gives a reading of				
		30 cm of mercury. Find the discharge of oil.				
		Neglect losses.				
OR						
10	a)	What is a pitot-tube? How will you	L3	CO5	6 M	
		determine the velocity at any point with the				
		help of pitot-tube?				
	b)	The following data related to an orifice	L3	CO5	8 M	
		meter				
		Diameter of the pipe $= 240$ mm				
		Diameter of orifice $= 120$ mm				
		Specific gravity of $oil = 0.88$				
		Reading of the differential manometer				
		= 400mm of mercury				
		$C_{d} = 0.65$				
		Determine the rate of flow.				